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We prove Borel summability of the perturbation series for the dielectric constant 
and the free energy density for the hierarchical ?t(V~,) 4 lattice model. Our 
methods are based on nonperturbative renormalization group analysis of the 
model. 
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1. I N T R O D U C T I O N  

The question what  is the exact relation of the per turbat ion series to the 
nonper turbat ively  defined quantities in models of statistical mechanics  and 
quan tum field theory is fundamental ,  especially in the latter case, where the 
existence of the nonper turbat ive  quantities is still to be shown in four 
space-time dimensions. After  the early phenomenologica l  and theoretical 
success of the renormalized per turbat ion calculus, some doubts  arose 
whether the per turbat ion series determines the whole structure as it was 
found  (I,2~ that it diverges in m a n y  interesting cases. A possible way  out of 
this difficulty seemed to be offered by the idea of nonconvent ional  resum- 
mat ion  of divergent series, the Borel resummat ion  technique being the 
bes t -known example of such a procedure.!  3~ Since then, it has been shown 
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that the perturbation series of super-renormalizable models of field theory 
(like XO 4 in two and three dimensions) is Borel summable. (4'5~ The study of 
these models contains elements of local analysis in the phase space which 
can be best systematized by the renormalization group approach. (6'7) In the 
present paper we begin the study of the infrared counterpart of the field 
theoretic (ultraviolet) problem: the Borel summability of the perturbation 
theory for lattice critical models. The simplest of such models, which is 
asymptotically free in infrared and in a certain sense infrared super- 
renormalizable, and for which we cannot hope for convergence of the 
perturbation series, is the X(V+) 4 model. This model has been studied in 
numerous works. (8-13) The analysis of  (14'11'13) was  based on the renormal- 
ization group ideas. Here, we show how these ideas may be used to prove 
the Borel summability of the perturbation series in such a case. For 
simplicity, we shall study a hierarchical model for which the renormaliza- 
tion group tranformation becomes a recursion for the single spin potential. 
We plan to deal with the full ~(~7~) 4 model in another publication. Being 
greatly simpler, the hierarchical model offers nevertheless an understanding 
which is sufficient for the general case. It might also provide a new insight 
into the summability problem of the infrared asymptotically free X(O4) in 
four dimensions (14'15) and into the (infrared) renormalons. (16) 

2. DEFINITIONS AND RESULTS 

The )t(V~) 4 lattice model of equilibrium statistical mechanics, also 
called the anharmonic crystal, is described by the Gibbs state formally 
given as 

- E  1 1 exp - ~2 X(V/~qOx) 4 - ~ 2 (V/~qOx) 2 
N g,x ~,x 

Restricting ourselves to expectations expressible in terms of V~ep ~ q5 
(which is necessary in d = 2), we may rewrite (2.1) as 

~1 exp( - ~,xX~4) d~a (~) N (2.2) 

where dt~(q~) stands for the Gaussian measure with mean zero and 
covariance 

cxy = v (  -  )-lv(x - y )  (2.3) 

Our hierarchical approximation, (JS~ similar to the one introduced in Ref. 
h 17, consists of replacing the covariance Gxy by a hierarchical one Gxy 

described below, which mimics the long distance behavior of Gxy~ 
O([x _ y l - a ) .  For simplicity, we shall choose Gffy to be diagonal in the 
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vector indices of (b and shall study only a single component model with the 
field q~,0 -- d#. 

Before we define GJ~ we need some notations. Let L be an even integer 
and let for x ~ 2 a, x k denote the point in 7/d whose coordinates are the 
integral parts of the coordinates of L-k•  In other words Lkxk is the center 
of the L k • . . . .  • L k block to which x belongs. Choose a function A on 
the L • �9 �9 • L block in 2 d centered at the origin which takes values +_ 1 
and sums up to zero. Define first 

rx~ = A (x  - Cx, )A ( y - Ly , )  a~,~, (2.4) 

F is a positive (but not strictly positive) matrix. The hierarchical covariance 
G h (for a single field component) will be given as a superposition of a 
hierarchy of I"s taken on different length scales: 

G)y = ~'~ L-akF  (2.5) Xk,Yk 

k = O  

Notice that 

G~y = O ( L  d k ~  yl -a) (2.6) 

where k 0 is the first integer such that xk0 = Yko" 
In general, given a (reasonable) single spin potential v, we shall define 

the perturbed state [mimicking (2.2)] by 

__IN e x p l -  x~A ~ v(q~x)] d/zGh (q~) (2.7) 

For simplicity, we shall take the finite volume region A as {x ~ 2d: xL,  ~ 
= 0}, i.e., as an L N~ • �9 �9 �9 X L No block centered at the origin. 

(2.7) is specially well suited for the renormalization group analysis. 
Notice that by (2.5) 

Gfy = L-dG2,y, + r~y (2.8) 

and by (2.4), 

Decomposing 

F~y = 0 (2.9) 
x : x I f i x e d  

~x = L - a / 2 ~ l  + gx (2.10) x, 

where the block spin field 

�9 = L ( 2 . 1 1 )  
x : x L f i x e d  

we easily see from (2.8) and (2.9) that if r is distributed with the measure 
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dbta~ then (1) so is ~i, (2) q)l and Z are independent so that 

d~c~ (r = d~c~ (r dI-Lr(Z ) (2.12) 

For the perturbed state (2.7), we get the following expression: 

l e x p [  - xEA ~ v(L-a/26)•'+ Zx)] dtta~(e~')dlzr(Z) (2.13) 

From (2.13) we easily read off the effective state for the block spin field ~b I, 
It is given by 

• ==A2 ,(L + Zx)I+,(Z)d,G.(+') (2.14) 
The crucial simplification of the hierarchical model consists in making the 
fluctuation measure dttr(Z ) local over L • . . .  • L blocks (in the case of 
the full model we would have coupling of different blocks by exponentially 
decaying tail terms). Thus (2.14) may be written in the same form as (2.7): 

where A l = (y  ~ ]Id :YL,%-~ 0) and 

exp[--vl(qb]x,)] =constfexp[- ~] ~(L d/:q)'x,+ Zx)] d.r(Z) 
x : x ]  f i x e d  

(2.16) 

Using the specific form (2.4) of F and choosing the constant in (2.16) so 
that v~(0) = 0, we may rewrite it as 

exp[ -- v,((l)) ] 

f e x p [ -  (1/2)Ld2++_ t~(L -d/2d ) + z ) -  (1/2)z2][ dz/(2~) '/2 ] 

f exp[ - (1 /2 )Ld~ ,+_  v(+_z) - (1/2)z2] [ dz/(2~r) '/2 ] 

(2.17) 

Hence the renormalization group approach reduces the study of the mass- 
less state (2.7) to the analysis of iterations of the recursion (2.17) for single 
spin potential. For the partition function 

the same approach gives immediately the recursion 

(;E l L~v(+z)_ z2 dz ZA(V ) = exp -- ~ +_ (2~r)1/2 ZA,(v,) (2.19) 

In Ref. 15 we have shown that for a large class of small even v's the 
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subsequent iterations v n converge to v~(~)=  ( 1 / 2 ) L - d ( e ~ -  l)~b 2. Coo has 
an interpretation of the dielectric constant as on long distances the infinite- 
volume two-point function (~xs becomes e~lG~5; see Ref. 15. In the 
same case the free energy density f ~  is given by 

f ~ = -  lim 1 logZA(v ) 
A - ~  

= -- ~ L d ( k +  1) 

k = 0  

• log f  exp[_ La%(z) _ l z2]  dz (2.20) 
(2~r) ~/2 

as easily follows from (2.19). 
In the present paper, we shall consider the initial potential v depending 

on the parameter 2~ [e.g., va(ff) = X~ 4] and study the Borel summability of 
the perturbation expansion in powers of 2~ for the free energy density f~(X) 
and the dielectric constant e~(~.). The results may be easily generalized to 
the infinite-volume correlation functions. 

We shall make use of the Nevanlinna-Sokal (N-S) theorem, which 
establishes conditions under which a complex function f(~) is equal to the 
Borel sum g(~) of its asymptotic Taylor series) 18) So let y,,~=oa, X ~ be a 
formal power series. We say that it is Borel summable in a domain C, if 

(a) B(t) = ~,a~t" /u!  converges in some circle It] < 6. 
(b) B(t) has an analytic continuation to a neighborhood of the 

positive real axis. 
(c) For )~ ~ C, g0~) = (1/)~)f~e-'/XB(t) dt converges (not necessarily 

absolutely). 
B(t) is called the Borel transform of the series ~,~=0a,)~ ~ and g(~) is its 

Boret sum. 
Now suppose that f(~.) is analytic in 

1 Ce ~ {2~ " Re ~ > ~ }  (2.21) 

R > 0 (see Fig. 1) and that 
N - - I  

f(?~) = ~,, ana" + R N ()~) (2.22) 
n = 0  

with 

IR~v(X)I < AaNN! N (2.23) 

uniformly in N and in ~. ~ C R . 
The N-S  theorem asserts that the series y,n~__0a~X" is Borel summable 

in C R and thatf(~) = g(),) there. Applying this theorem, we shall obtain the 
following. 
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Fig. I. 

The Main Result: Suppose that L is big enough. If v(qs)= ~k~ 4 then 
there exists R > 0 such that the infinite-volume dielectric constant %o(h) 
and the free energy density f~(1)  are analytic in C R and equal there to the 
Borel sums of their perturbative expansions. 

3. INDUCTIVE RENORMALIZATION GROUP ANALYSIS 

Our strategy is to establish the convergence of the iterates v n of 
transformation (2.17) to a fixed point (this has been done in Ref. 15) and to 
prove the estimates of the type of (2.23) for each %. This requires some 
additional work. 

Let us consider the Boltzmann factors depending on ?t E C R for some 
R > 0 :  

g.(eO) = e -v"(*) (3.1) 

with 

v.(~,) = �89 - 1)q, 2 + ~n(~) (3.2) 

0 2 
6.(0) = -O--~ ~.(0) = 0 (3.3) 

~.(~) = g.(q,)exp[ �89  - 1)~ 2 ] (3.4) 

We assume inductively that 
(A.): ff.(~,) is analytic in ff in the strip IIm~[ < (n o + 11)2 and in X in 

C R and satisfies there the estimate 

O~m L(+) <~ cm(  m! ) 2e~"l'~Lz' m = 0, 1 . . . .  (3.5) 
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(B~): 
X r C R . % and t~ n as given by (2) and (3) satisfy 

d m 
d ~ " ~ ( s  1 -  i )  ~ EnCm(m!) 2 

0 m ~ - ~ v . ( O )  <~ ~,Cm(m!) 2 

For [~1 < (n o + n) 2, gn(d?) = e -~'(~') for v, analytic in g, and in 

(3.6) 

(3.7) 

Proposition 1. Fix some 0 < 8 <  1 and set ~ / , = 6  "~ x n =  
Co[I~=l[1 + ( n o +  k ) -3 /2 ] ,  C, = Col-I~=l[1 + ( n o +  k ) -3 /2 ] ,  E,  = 
6n~ + (n o + k)-3/2]. Suppose that L >/ L(6), 0 < c o < Eo(6, L), n o 
>/ ~0(6, L, c0), Co/> Co(6, L, c 0, no), and R < /~(6, L, Co, no, Co). Then (An), 
(B~) for gn implies (An+l), (Bn+l) for g,+l. 

Notice that if one considers the conditions (An), (B,) for m = 0 only 
then Proposition 1 essentially coincides with the result of Ref. 15, which 
shows the convergence of v,'s to a Gaussian fixed point. 

In the proof of Proposition 1, we shall keep using the following simple 
result: 

Lemma 1. Suppose that h is an analytic function of 2~ in some 
domain and that 

d-~mh <A(m!)2C m, C,A>O,  m = 0 , 1  . . . .  (3.8) 

Then for any integer k > 0, 

d ~ kcm(m,)2(m+ k - 1 )  h k < A k - 1  (3.9) 

and for any function f (u)  analytic for In[ < Rf, Rf > A, bounded there by 
Cf and vanishing at zero, 

dm f o h  < CI ARZ-' C )2 
1 - ARf -1 1 - ARu-' (m! (3.10) 

Proof  of  Lemma 1. 

k 

E 
(m I . . . . .  ink) i=  

mi>~O, ~ i r n i = m  

<~ A kCm(m! )2 2 r e + k - l )  E l=A~Cm(m!)  ( k -  1 
(ml . . . . .  ink) 

m,>~O, ~ i m , . = m  

(3.11) 

(3.11) 
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Using (3.1t) and the Cauchy estimates for the Taylor coefficients of f, we 
obtain 

d m f o h <  " ~o Rs-  hkr 

6 (m + -- l ;  ,k 
c fCm(m! )  2 <. (AR#  1 (3.12) 

k=l'l" m ! ( k - 1 ) !  ) 

Setting ~ ~- A Rf- 1 gives 
0 9  

dm foh < CfC'mI~k~__l d~m~ "+k-' 

m ~Pm! 
= Cf Cmm'~ dm ~m __ CfC'm'~ ~,, (~)il 

dU" 1 Z ~  e=0 - ~)P+~ 

= (m[ �9 (3.13) 

The typical situation in which we shall apply Lemma 1 is when A is 
very small and Rf and Cf are O(1). As an example take h = %-1 _ 1 and 
f (u)  = - u / ( u  + 1) Rf = 1/2, Cf = 1. Then Lemma 1 together with (3.6) 
give 

m 

[id---X -~ 1 - 2 ~  1 S2E. 
-<< 3E,(2C,  )re(m! )2 (3.14) 

Let z i = L - a / 2 0 + z  for i =  1 . . . . .  La/2  and z i = L - a / 2 0 - z  
for i =  L a / 2 +  1 . . . .  , L a. Denote by d/zv(z) the Gaussian measure 
exp[ -  (1/2)~, -Jz2]dz/(2w?) 1/2. Define 

L a L d 

gin+l(0) =f ----1~ll gn(Zi) d'e" l(Z) / ; ~=I gn(z)dlJ~-l(Z) (3.15) 
i-- i= 

where ~. is related to the Boltzmann factor g. by (3.4). Comparison with 
the renormalization group recursion (2.17) gives 

gn+~(O) = exp[ - ( 1 / 2 ) L - a ( e .  - 1)021 g'n+,(0) (3.16) 

In order to estimate the ruth derivative with respect to X for m > O, we 
shall make use of the following integration-by-parts identity: 

dX d z  2 
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Applying (3.17) to the numerator of the right-hand side of (3.15), which we 
denote by h (~,), one obtains 

;X m h ( , )  = ~ 2 
(1~))2'~, I1~I >0 

OX t1~[~11~1 Cnl)__~ [ tri. ~ ~ 2 l  olli} gn(Zi)]dl,~g ,(z ) 

(3.18) 
with (Ii), (I~} disjoint, (UiIi)U ([.J~I~)= (1 . . . . .  m) and we should con- 
sider the collection (Ii) as ordered and (I~} as unordered. 

We shall analyze (3.18) separately for small and for large values of q~. 

Smal l  F ie lds  

Insert into (3.18) the partition of unity 1 = X(z) + X• where X is the 
characteristic function of the set (z :lz[ < e(n o + n) 2} for some small fixed 

> O. Let us take [q~[ < La/2(1- 2e)(n0+ n + 1) 2 . With the use of the 
bound (3.7) and Lemma 1 with f (u)=e ~ -  1, Rf---1, we obtain the 
following estimate for z in the support 'of X, If[ < no + n, and [Ii[ > 0 

+ + < ( .o  + 

g . ( z i +  < i--7o (m! 

< 2~,Cm(m! )2 (3.19) 

where we shall denote by C,~ different constants increasing in the process of 
estimation but always bounded by C,(t  + (no+  n + 1)-3/2) = C~+ I. For 
l l i [= 0, we have 

[g,(z, + ~)1 < e "  (3.20) 

Thus 

,~(zi + < I~ 2vlnC[l"l(lli]!) 2 I ] e ' '  (3.21) 
i= i : I/i[>0 i : 11i1=0 

Using the Cauchy formula to estimate 321/~z 2t, (3.21) and (3.6), we may 
bound the integrand P on the right-hand side of (3.18) for z in the support 
of z: 

1 

: II, I >0 

•  1-I e~")(2l)' (no + n) -2t (3.22) 
i : Ili[=0 
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If all Ilel = 0, we may  obtain addit ional  factor L •  using IIIe~,(ze + ~0) - t I 
< Larl, l-Iee ~" ( remember  that we consider m > 0 case). 

Let  us insert (3.22) to the par t  h;,(~a) of (3.18) obtained by restricting 
the z integration to the support  of X(Z). Let us also order  the collection { I~ } 
and resum all (I~), ( I , )  with given II,[ = me and II~[ = rn~. We obtain 

Ihm(,~)L ~< C "  E 
(m,.).(ma) 

mi >~ O , m,~ > O 

~ , m  i + ~ r n .  = m 

m! 2 - t E [ ( 2 l )  ! 

IIemi ! ]-L~m,~ r l! (n o + n) 2l 

.(  n 
i : m i > O  i : m i = O  

where the last factor Ld~n appears only in the terms with all m~ = 0. 
We shall estimate first the sum over terms with at least one m i ~ O. 

Call it the 1st part. To  fight with the addit ional  2 l ! / l !  ~< 4t/! we shall use 
the following easy estimate: 

I-I m~! l! 
o t ~ |  

~< 1 (3.24) 

Thus 

1st par t  < c~m(m!) 2 E (27L)J(e") L~-j 2 
j = l  ( rn i~=, . rn i> 0 ( n o +  n) 2 

(m~)/~= L, rn~ > 0 

L d 

< 39.c;m(m!) 2 E (L.a](2~.) I0-'~/2J2 
j = l \  l } 

• j + l - 1 (n o + n) 2 

L d 

3~/.c,~m(m!) 2 E ( L . ' ] ( 2 ~ - )  (I-'V2 
j = t \  I ] 

. v (  "7' )( )'+" ..5) t ~ o k J  + - 1  (n o + n )  2 
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where we have used 

~ )  ~ - ~ ,  

Now 

So 

2 ~  
(2~/,) '/2 < (3.26) 

(~o + ~)2 

l=o J + l -  1 (n 0+  n) 2 
m' t )' <~ ~--], m - 1  
l=o l (n o + n) 2 

= 1+  ( n o + n ) 2  (3.27) 

L d 

l s tpar t  4 . ~ / . %  t �9 ~ (2T/.) U- 
j= l  

I 2E, ira--1 
1)/2 1 + (n0+ n) 2 

lm ~3C%,,c,~m(m!)211 + O(~/1/2) 1 + (no+ n) 2 

<~ 3Ld~,,Cff,,(m! )2 

where of course in the last step C,~ increased slightly again. 

(3.28) 

For the 2nd part of the right-hand side of (3.23) containing terms with 
all m i = 0, we obtain 

2 ~  
< 

(n o + n) 2 

2Eo ~< 
(n o + n) 2 

Putting (3.28) and (3.29) together, we obtain 

ihm(~) I < 3LaTI, c~m(m!)2 

r%C,7(m ) 2 Z 
r = o -  l ( n 0 + n )  2 

L a~l, c,~m(m !)2 (3.29) 

(3.30) 

Next, we shall estimate the contribution h"(e~) to (3.18) from the 
integration over the support of X• All the time for [~1 < La/2(1 - 2e) 
(n 0 + n + l )  2 a n d ] ~ ' l < n  o + n but for [z[ /> e(n 0 + n )  2 

or,,r ) c2',J(l/~l!)2e~.~ ~,+~r2 (3.31) 

where we have used (3.5). Using again the Cauchy formula, we found the 
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integrand P on the right-hand side of (3.18): 

• exp(~n]qS[ 2 + 2LatCnZ 2 + 2gaK,,[~'[ 2) 

Now 

Gaw~dzki et ai. 

(3.32) 

1 -- ~-d~/. 1 - 6Ld~/, (m!)2 

6La~l.c/,m(rn! )2 (3.37) 

RI = 1/2, and obtain 

m 

3 - ~  l ~  I I  g.(zi)dla,# 
i = l  

exp( ~,le~12) f x-L ( z )exp( 2 L "~z 2) d~,- , ( z ) 

=exp(G]O]a)fxJ_(z)exp[l(c _4L~.)z 2 ] dz 

[ 1r nO+ n) 4] << exp GLa(1 - 2E)2(no + n + 1) 4 - 7 

V 1 e2(n ~ + n)41 (3.33) ~< e x p [ -  

where in the last step we have used the smallness of G- Hence we may 
estimate ]h'(q5)] by, e.g., the right-hand side of (3.23) multiplied by 
exp [ -  (1 / 10)eR(no + n)4]. As a result, 

]hm(O)l < 3Ld~,c'm(m!)2exp[- -~O e2(no + n)4 ] (3.34) 

Putting (3.30) and (3.35) together, we obtain 

Omh~ ) 
[ < 3La~jnC/m(m! )2 (3.35) 

It is easy to see that (3.35) holds also for m = 0 if we replace h(0) by 
h(0) - 1 (in fact, this case was already considered in Ref. 15). Thus 

II g,(z,)dl~,,;,(z)- 1 < 3td'qnc~m(m[) 2 (3.36) 
i = 1  

Once more we shall apply Lemma 1, this time for flu)= log(1 + u), 
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By the very definition of ~. + 1, we have 

l 

In order to obtain 

157 

+ log f ~ s 

132 r',=o[logf . ,(z) 

the final bound for (3m/3)~")~.+1(~), we apply the' 
contraction lemma used many times in Ref. 15. 

kemrna 2. Let v(,~) be analytic for ]~'l < R and let Iv(9)] be bounded 
in the same region by the constant C. Then for [q'l < r < R 

~(r 1 ~ d ~ (0) ~ ~ ) " + ' c  - ~ ~.~ d--~v < ( (3.39) k=O 1 -- r / R  -R 

Indeed, define 

w(~,) = v ( ~ ) -  k 1 ~ ,  d k v(0) (3.40) 
, = o  ~., 

Then by the Cauchy formula, 

w(~,) = ~/~l~j=R_ v(; ) 1  ( 

and (3.39) follows immediately. 
Taking the ruth derivative over h of (3.39), m = 0, 1 . . . . .  and using 

(3.38) and Lemma 2, we obtain for 1671 < (n o + n + 1) 2 

< [L~/2(1 _ 2~)] -4 3~m 1 - L-a~2/(1  - 2e) " 6L d~?" c/'m(m[ )2 
1 

< •,+ ,c/m(rn! )2 (3.42) 

which implies (3.7) for n + 1. 
Similarly, denoting 

& , + , = - L  d 0~ 232 ~,=0[logf[I ~ , ( z i ) c l ~ , ( z ) ]  (3.43) 
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and using the Cauchy formula, we obtain 

d m 12Ldrln(Ld/2(1 -2~)(n o + n + 1)2)-2c~m(m! )2 
d-X-~ a~o+l 

,m iml  )2 
~ . G t  �9 

From (3.43), (3.16), and (3.15), we infer that 

En+l = s "{- (~En+l 

o r  

(3.44) 

(3.45) 

Now, for m = 0, 1,2 . . . .  

d - ~ q -  + 1 1(~s n 

d m 
d--X-~ &., + l ~ J ~ ( E n  1 - 1 )~(n+ t  31"- d m 

m I d # 
"~7 :o (7)I ~ ( % '  - i i ~ <,m~ ~ +, + ~,~ ~,m ~m '~ 

<-< F-..~~ ~ m! #!(m-#)!+,.CT(m!)2<.(m+ 2),.G" (m:)2 
p=o 

(3.47) 

But 
am+2 (3.48) 

m + 2 ~< e loga  

f o r a > l .  T a k e a = l + ( n  o + n )  -2 .Thus  

dm l~(n+ 1 < (3.49) I ~-~-~ e# ~13C~m( m ! )2 

Applying again Lemma 1, we obtain 

O m - I  2/3 ,m t )2 [(1 + G-13G+,) - 1] < 3rt, , C,~ (m. (3.50) 

Repetition of the argument of (3.48) gives now 
om _ 

a-~i.e,, l[(1 +G-l&n+i)  - 1 -  1] ~< En(no+n+ 1)- 3/2C;m(ml )2 (3.51) 

(3.52) and (3.6) of (B,) give (3.6) for n + 1 and complete the inductive 
proof of (Bn+ 0. 

Large Fields 

We are left with the proof of (An+ 1), given (An), (Bn). First, notice that 
for 141 < (no + n + 1) 2, Ign+l(~)/q,41 < Bn+i(n0 + n + 1) -s  by the maximum 
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principle and (3.43), so that 

I+: 14- I I,L ~(0)1-< g/n+l (nO ; 1) 2 g]n+l 
I~1 t 2 . < ~.+,1~,t ~ 

(n o + /'/ + 1) 2 

(3.52) 

~< 
(m~):= ,, m,~ > 0 I~rn,~!l! -~L ~n )21012 

~m~ ~ m 

(3.58) 

and 

] gn+,(~)[ ~< e~"+'l<2 (3.53) 

Similarly, using Lemma  1 and (3.43), we obtain for m = 1,2 . . . .  

Om gn + 1(4') , m  .)2 'F*I~ (3.54) ~< 2 ~ , + l ( C ; )  (m v < cm+,(m!)2e K.+ 

So we are left only with proving (3.5) for n + 1 and ]Im~[ < n o + n + 1, 
I~] > n o +  n + 1. We shall estimate [Omh(,#)/oxm[ first. Notice that the 
integrand on the r ight-hand side of (3.18) is bounded  as in (3.32), but  now 

{[ , 1,o,2) exp(~.],/,] 2 + 2L~,~.]f] 2) -<< exp Kn 1 + ~ (no  + n + 1) -3/2 

• e x p [ ~ , ( n  o + n + 1) 5/2 + 2 L • ( n  o + n) 2] 

-<< exp(~f,+,]~]2)exp[-  �88 o + n  + 1) s/2] (3.55) 

Estimating the sums of (3.18) as before using now the extra strength coming 
from the last factor on the right of (3.56), we obtain 

I 0mh (q~) ] 
<~ c~m(m!)2exp(x,,,+,l~a]2)expI_ gl t%(n ~ + n + 1) 5/2] (3.56) 

for m = 0, 1, . . .  and ]c) I > (n o + n + 1) 2, Ilmq, I < no + n + 1. But 

s +, (,#) = h (~)exP(�89 L - a&~ + ,~2)h (0) - '  (3.57) 

Let us estimate using (3.45) 

O m exp (1  L-d6r i0 2) 

l 
-< n 

Uj~=(1 . . . . .  m) 

• e x p ( 1 L - d S , + l O  2) 
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Using the inequality (�89 L-an~/21q,12)' < l! exp(�89 L-a~'~/21e?12), we obtain (m 
= 1 , 2  . . . .  ) 

3 m exp(1L-d3G+l(p2) < C'm(m,)2exp(~l/21~?12 ) ~  (7s  I 1 ) ~ /2  
2 /=1 

1/2~pm. I - 2 , ' ~  1/2 m - 1  1/2 2 < 7/. % (m.)  ( , - r b , )  exp( , ,  },hi) 
<. C/,~(m! )2exp('rlnl/2lr 2) (3.59) 

which holds also for m = 0. Finally, using (3.37) and Lemma 1, we may 
write 

h ( 0 ) - '  .<< 2Cff~(m! )2 (3.60) 

for m = 0, 1 . . . . .  Equations (3.57), (3.56), (3.59), and (3.60), give 

~m gn+l(q ~) 

[ 1 ]c,~mexp[(#,,+, ..,[. Tjnl/2)]~[2] ~< 2exp ~- G(no + n + 1) 5/2 

x E (11,1!)2(112[! )2(1131! ) 2 
11,12,13 

U I i = { I  . . . . .  m} 

2 > ?  +  36,, 

Absorbing (m~-2) into increase of C s with the use of (3.48), we obtain 

am s162  C m < .+,(m! )2exp(G+,l~,l 2) (3.62) 

for IIm~[ < (n o + n + 1) 2, [,/,[ > (n o + n + 1) 2 which was the missing part of 
(3.5) of (A,,+ i). This completes the proof of Proposition t. �9 

. P R O O F  OF THE MAIN RESULT 

First we  have to show that v(q,) = Xq~ 4 satisfies (Ao), (Bo) with K o small, 
n o and C O sufficiently large and R sufficiently small. In fact, 

a m ~-xr 1@4me-X<," I < ( 41 co)mj2co-,/2~alzmle-X,41 

1 co)me2c#,/%12le-X," I (4.1) < (2m)! ( 

Setting X = ~k i q- i~t2, q5 = q~l + iqb2, we obtain 

- R e [ ( X l  + iXz)(q~, + i~2)41 = --X,q, 4 + 4X2q~q,2 

2 2 4 (4.2) + 6Xlq~l~)2 - 4X24q~ 3 - XI~2 
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For Re(l/X) > 1/R, ~.l > 0, X,/(X 2 + )~2) > 1/R, taking also [e?2 ] < n 2, we 
see that 

2 2 41x211~,~=1~2 ~ 6X,q~r - 4~k2q~lq5 3 - )kl~2 4 ~< 6Xl(qbl 2 -t- ~2)qb2 --1- 

< 6Rn4(ep~ + ,2) + 2Rn%A,21 

< 7Rn4(q~2 + q2) = 7Rn41~,12 (4.3) 

Combination of (4.1)-(4.3) gives 

0 m _ )2e(2Cd-~/2+7Rn4)leol2 -3-~-~e x~; < C~'(m[ (4.4) 

We shall take C O big enough so that C O i/2 < �88 G0 and then R < ~4 K0no 4 to 
obtain 

3m - -~k~4 C ~ ( m !  )2e ~~ (4 .5)  0~-~e < 

Taking C o > n~6 no and R -<< ColnoS6 "~ we also obtain 

0 m ~k~4 < 8nof~(m!)2 (4.6) 

for I'~1 < n2. 
This establishes (A0), (B0) for v(q~) = M~ 4. So also (A,,), (B,,) hold for all 

n. Since by Vitali's theorem % ~ e~ uniformly on C R, (3.14) gives 
d m 

d-X7 (e~ - 1) .<< 2E~(2c~)m(m! )2 (4.7) 

As far as the free energy density is concerned, notice that 

1 dz 
l~ f exp[-- Ldvn(z) -- ~ z2] (2~r)l/2 

1 1 o g ~  l (4.8) = logfexp[  - L % ( z ) ]  dl~,v,(z) + 

The X derivatives of the first term on the right-hand side of (4.8) are 
bounded by (3.38). For the second term, we get using Lemma 1 and (3.6): 

< 2E~(2C~)  (m! (4.9) ~ logE~ 1 m )2 

By (2.20), f ~  exists, is analytic on C R, and satisfies 

0 ~ f~  <~ 2Em(2c~)m(m! )2 (4.10) 

It is easy to see that from the uniform bounds (4.7) and (4.10) in C R it 
follows that r and f ~  can be continued to C a to a C ~ function. But f rom 
our renormalization group analysis, we infer that e~ and f~o are continuous 
(hence C ~) at X = + 0. Now (2.22) and (2.23) easily follow for ~ and f ~  
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f r o m  the T a y l o r  e x p a n s i o n  wi th  r e m a i n d e r  a n d  (4.7) a n d  (4.10) a n d  y ie ld  

by  N - S  t h e o r e m  our  m a i n  result .  
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